
ConfigTreeView Documentation
Release 0.1.3

Wesley Hansen

Jul 19, 2017

Contents

1 Contents: 1
1.1 About ConfigTreeView . 1
1.2 More About ConfigTreeView . 2
1.3 The Config Structure . 3
1.4 HOW-TO: Create a config file . 6

2 API Documentation: 13
2.1 configtreeview Module . 13

3 Examples: 15
3.1 Examples . 15

4 Indices and tables 19

i

ii

CHAPTER 1

Contents:

About ConfigTreeView

This is an implementation of a GtkTreeView in python(using pygtk) that allows for easy, fast, and dynamic
setting up of a TreeView, its TreeViewColumns and CellRenderers. This ConfigTreeView can create a
TreeView with all its properties initialized through the use of a simple config-type file. This config file
can be in a python dictionary format, or even read in from a JSON object.

The Why (Why use a ConfigTreeView?)

• The ConfigTreeView was designed in such a way to abstract the developer from having to set up indices for how
a ListStore row of data should look. The config file creates an easy way to do it and allows you to supply a row
of data in python dict form(or a JSON) while initializing all the properties, columns, cell renderers that could
possbily be used in creating a TreeView.

• Eliminates the several lines of code it takes to initialize a TreeView. A TreeView is a very useful but also very
complicated widget in the gtk arsenal and this implementation takes away that complication.

• Useful for data sets that could change frequently without having to go in and change the code.–This is actually
the use case that I ran into at my place of work that inspired me to create the ConfigTreeView. We have an
application that many people use in the office that is connected to a server. The application gets all of the data
from the server and displays it in a GtkTreeView but the data could change in the near future as we may need to
display new columns or different formats of data in the same TreeView so we wanted a system set in place that
could allow for us to change the data the server was sending without having to go in and change the code in the
clients(i.e. the TreeView) in order to properly display the newly changed data. With a ConfigTreeView you can
do just this: the server can supply a config structure to initialize the clients, eliminating the need for changing
the client code.

How to use it

• It’s easy! All you need to do is create a config file(either as a python dict in a .py file or as a JSON file).

1

ConfigTreeView Documentation, Release 0.1.3

• Then with a config file, you’re ready to create a ConfigTreeView:

from config_treeview import ConfigTreeView
#Import the config structure(it's a python dict named config)
from myconfigfile import config
#Create a ConfigTreeView using config as the configuration structure
treeview = ConfigTreeView(config)
#Apply the config structure to finish initalizing the TreeView
treeview._apply_config()

More About ConfigTreeView

The ConfigTreeView is an implementation of GtkTreeView that has its widgets, their properties,
and attributes set via a configuration structure. Because of the nature and design of this config structure,
a very simple, intuitive, and flexible data model has been created that both define the look and feel of the
treeview, but also explicitly detail the shape and look of the data that the ConfigTreeView is expecting.

The ConfigTreeView‘s data model is indirectly defined in the index-names key in the config
structure. This key has a dictionary as its value that looks something like this:

{
'cell-bg-index': bool,
'market':{'pixbuf': "gtk.gdk.Pixbuf"},
'status':[{'markup':str},{'markup':str}],
'name':{'markup':str},
'address':{'markup':str},
'contact':{'markup':str},
'payment':[{'markup':str}, {'markup':str}],
'shipping':{'markup':str},
'comments':{'markup':str},
'placed':{'markup':str},
'id': str,

}

Each inner-level key represents a new index of the defined type in a data row that will eventually be
inserted into a GtkTreeModel.

The Data Model

The ConfigTreeView data model refers to what structure the incoming data must look like in order for the
data to be properly formatted and displayed. The data model is indirectly defined by the index-names
dictionary defined in the configuration structure. What this means is that the index-names dictionary
is also the same structure that the data model should follow, replacing the types that were defined for the
actual values at that particular index. An example data structure for a single row of data following the
data model defined above:

{
'cell-bg-index': True,
'market':{'pixbuf': "/images/market1.png"},
'status':[{'markup': "Current Status"},{'markup': "Shipped"}],
'name':{'markup': "Darth Vader"},
'address':{'markup': "The Death Star"},
'contact':{'markup': "867-5309"},
'payment':[{'markup': "Visa"}, {'markup': "$100.00"}],

2 Chapter 1. Contents:

ConfigTreeView Documentation, Release 0.1.3

'shipping':{'markup': "Shipped"},
'comments':{'markup': "No comments"},
'placed':{'markup': "2012-06-19 12:08:33PM"},
'id': "123435252335",

}

But the data model also is a little more flexible than this. There may come a time when you don’t want to
display all information for a row. With this data model you only need to define the indices that you plan
on using. So a more minimal row of data could look like this:

{
'name': {'markup': "Darth Vader"},
'address': {'markup': "The Death Star"},
'status': [{'markup': "Current Status"}, {'markup': "Shipped"}]

}

The Config Structure

We needed something that could initialize the treeview’s gui components and their properties(TreeViewColumn,
CellRenderer, and the TreeView itself), but also have an insight into what each renderer is expecting of the data(for
setting up cell-specific renderer properties, or which data it’s going to display) without having to specifically define the
actual indices into the data that these components are searching for(the treeview will be able to handle that internally
upon initialization using the config file)

Complete Structure, with every possible key:

Note: This structure details every possible key or key arrangement for the sake of it. It can appear to be complex and
overwhelming at first glance, but don’t fret. If a key that isn’t required isn’t used at all for the ConfigTreeView you
want to build, then don’t have to include that key. This applies to top-level keys as well. This functionality allows the
user to rapidly and easily build TreeViews.

{
"treeview":{

"properties":{ #This struct will contain all treeview properties---
→˓meaning things that can be set using `treeview.set_property(property, value)`

"rules-hint": True,#<---A property of GtkTreeView
"headers-clickable": True,

},
"args": [#Positional arguments to send to a custom ConfigTreeView--

→˓can be indices, or custom values
"$index.record_open_bool", #This is how you assign an index

→˓as an argument to the ConfigTreeView
"$index.column_one.1.markup", #An example assigning an index

→˓from a column that has multiple renderers--a number in a 'dotted' string represents
→˓the index in the list of renderers

],
"kwargs": {}, #Keyword arguments to send to a custom ConfigTreeView--

→˓same rules as "args"
'bg': None, #Set background color, bg-even and bg-odd override this

→˓option
'bg-even': '#A2C879', #Set even-row background color...must be

→˓accompanied by bg-odd
'bg-odd': '#6794AB', #Set odd-row background color...must be

→˓accompanied by bg-even

1.3. The Config Structure 3

ConfigTreeView Documentation, Release 0.1.3

'selection-mode': 'SELECTION_SINGLE', #The selection mode of the
→˓TreeView...must be one of SELECTION_NONE, SELECTION_SINGLE, SELECTION_BROWSE,
→˓SELECTION_MULTIPLE

'selection-color': '#bfd3e7', #Change the color of the selection bar--
→˓value can be a valid color name or hex string

},
"treemodel": { #You can tell the TreeView to build you a custom TreeModel(via

→˓the get_treemodel() function)
"module": "package.subpackage.module", #The package/module location

→˓of the class to import
"class": "CustomTreeModelClass", #Your custom GtkTreeModel

→˓implementation
"args": [], #The positional arguments to send to the TreeModel's _

→˓handle_args method
"kwargs": {}, #The keyword arguments to send to the TreeModel's _

→˓handle_args method
},
"index_names":{ #Maps the given index into the type of data it will store

"record_open_bool": bool, #This is how you define a type of 'bool'
→˓for an index that will be used by more than one column's renderer

"order_status":{ #This is how you specifically define types for a
→˓certain column(that contains only a single CellRenderer)

"markup": str, #The `markup` property of the cell renderer
},
"column_one":[#This is how you define types for columns with

→˓multiple renderers
{ "markup": str, "cell-background": str},
{ "pixbuf": "gtk.gdk.Pixbuf"},

],
},
"column_order": ['column_one', 'order_status'], #Define the order the columns

→˓are appended in the treeview. List the column names in the order you want them
→˓appended to the TreeView

"macros": { #Define macros--a convenience for assiging the same properties to
→˓multiple columns or renderers

"col-default": {
"expand": True,
"resizable": True,
"clickable": True,
"reorderable": True,

}
},
"columns": {

"column_one": { #A column named "column_one"--the name is used when
→˓determing: where columns go in the TreeView, which indices a column's renderers
→˓will use, and their types

"macros": ["col-default"], #Assign a macro(by name)
'header': { #This struct contains information to create the

→˓header for this column. A header can be a string or a custom widget. Defaults to do
→˓nothing

'title': 'Column1', #A simple text label displaying
→˓the title(This is a fallback to the custom widget)

'module': None, #The module that contains the header
→˓widget, None defaults to the gtk module

'class': 'Button', #A string of the class(must
→˓inherit gtk.Widget), to set the header widget to. None defaults to gtk.Label(If
→˓'title' key isn't present)

'args': [], #Positional arguments to pass to 'class'

4 Chapter 1. Contents:

ConfigTreeView Documentation, Release 0.1.3

'kwargs': {}, #Keyword arguments to pass to 'class'
},
"properties": { #This struct will contain all TreeViewColumn

→˓properties that can be set using treeviewcolumn.set_property(property, value)
"resizable": True,
"visible": True,
"max-width": 100,

},
"renderers":[#Create the Renderers(use a list if multiple

→˓renderers in one column)
{

'pack': 'pack_start', #Either 'pack_start' or
→˓'pack_end', if this is None, defaults to pack_start

'expand': True, #Sets the packing method
→˓'expand' property, if this is None, defaults to True

'module': None, #The module that contains the
→˓renderer, None if it's in the gtk module

'class': 'CellRendererText', #A string name
→˓of the CellRenderer class to use(must inherit gtk.CellRenderer)...if this is
→˓None, defaults to gtk.CellRendererText

'args': [], #Positional arugments to pass to
→˓'class', if None, don't pass args to 'class'

'kwargs': {}, #Keyword arguments to pass to
→˓'class', if None don't pass kwargs to 'class'

'properties': { #This struct contains all
→˓properties that each row will have by using cellrenderer.set_property(property,
→˓value), if 'properties' doesn't exist(or None), then no props set.

'height': 25,
'xpad': 5,
'font': 'Times New Roman 13',

},
'indices': { #This struct contains all

→˓properties that are set from the treemodel data...using column.add(attribute,
→˓property, index), None sets no attributes

#These indices are determined at
→˓runtime when the ConfigTreeView is initialized.

#You can either set them by assigning
→˓them a name(if one index will be shared by multiple renderers)

NOTE: You must assign by a
→˓name that exists in the 'index_names' key of this configuration file

#Or you can set them by setting a
→˓property value to True, telling the TreeView that this one is unique

"markup": True, #This
→˓CellRendererText needs its own 'markup' index in the data model

"cell-background-set": "record_open_
→˓bool" #All columns will share this index

}
},
{ #The second renderer in the "column_one" column

'class': 'CellRendererPixbuf',
'indices': {

'pixbuf': True, #This
→˓CellRendererPixbuf needs its own 'pixbuf' index in the data model

'cell-background-set': 'record_open_
→˓bool', #All columns will share this index

},

1.3. The Config Structure 5

ConfigTreeView Documentation, Release 0.1.3

},
],

},
"order_status": { #Another column, this one named "order_status"

'header': {
'title': 'Order Status',

},
'properties': {

'resizable': True,
},
'renderers': { #A single renderer can be defined as a single

→˓dict instead of as a list
'markup': True, #This CellRendererText needs its own

→˓'markup' index in the data model
'cell-background-set': 'record_open_bool'#All columns

→˓will share this index
},

}
}

}

HOW-TO: Create a config file

This document details everything you need to know about creating a config file for use with a ConfigTreeView. First
I’ll say a few things about how a config file is made.

Making a config file

-The config file is represented as a dictionary in python. Because of this, you can either create a python
dict in a separate .py file or create one on the fly within your code...OR...you can create the dict in a JSON
document...and simply give the path to the JSON file in the constructor to the ConfigTreeView where
you’d supply the python dict normally.

Basic Structure

-Here’s a look at the top-level keys in the config dict:

{
"treeview": {},
"treemodel": {},
"index_names":{},
"column_order":[],
"macros": {},
"columns":{}

}

6 Chapter 1. Contents:

ConfigTreeView Documentation, Release 0.1.3

The treeview key(optional):

The treeview key(this key is not required, unless you’re setting properties): This key sets up everything dealing
with initializing the TreeView container. This includes setting gtk properties, some style options and also sup-
plying custom positional and/or keyword arguments to your custom ConfigTreeView.

example:

{
"treeview": {

"properties": {
"rules-hint": True,
"headers-clickable": True

},
"args": [],
"kwargs": {},
"bg": "green",
"bg-even": "red",
"bg-odd": "yellow",
"selection-mode": "SELECTION_SINGLE",
"selection-color": "blue"

}
}

The properties key defines gtk properties for the TreeView as found in the pygtk documentation: http://www.
pygtk.org/docs/pygtk/class-gtktreeview.html Any of the properties listed here can be defined in the “properties”
key. An entry in the properties dict takes the following form:

"gtk-property-name": "value"

Note: if the value is not a native python type(ex: a gtk object), this is not currently supported if you define the
config file in a JSON as primitive types...but only a few properties are like that. If you need to use these types,
consider it good practice to define the config structure in it’s own python module. Then you can import all the
modules you need.

The args and kwargs keys let you define positional(args) and keyword(kwargs) to a custom ConfigTreeView
prototype. This works in the same fashion as passing any positional([]) and keyword({}) args to an object in
python. A common use/need for this arises when you need your custom treeview to know the index of an
attribute that was defined in the config file. The config file makes this easy with the use of the $index dotted-key
string.

An example of an $index key: $index.cell_bg_set Supplying the above $index key in either args or kwargs
will set that parameter as the index of ‘cell_bg_set’(as defined in index_names) in the data model. Values
supplied to args and kwargs are passed through the ‘handle_args’ function in the ConfigTreeView which should
be overridden when you create your own custom ConfigTreeView.

The bg, bg-even, and bg-odd keys are style options that I’ve added that allow you to change the background
colors of a TreeView. bg by itself changes the background to a single color...color can either be a gtk-accepted
string name(ex: “blue”) or it can be a hexidecimal string(ex: “#FF0078”). If you wish to have your ConfigTree-
View with two colors, alternating per row, supply the bg-even and bg-odd colors instead. Note: bg-even and
bg-odd must be supplied together or you’ll get errors when you try to apply your config. A GTK Note: These
color options change the underlying GtkStyle which is determined by the users theme. You should try to stay
away from using this and respect a user’s theme choices...but if you’re in a controlled environment or it’s for
personal use, then it’s okay to change these styles as you see fit.

The selection-mode key allows you to set the mode of the GtkTreeSelection. This is limited to these values:
(SELECTION_NONE, SELECTION_SINGLE, SELECTION_BROWSE, SELECTION_MULTIPLE)

1.4. HOW-TO: Create a config file 7

http://www.pygtk.org/docs/pygtk/class-gtktreeview.html
http://www.pygtk.org/docs/pygtk/class-gtktreeview.html

ConfigTreeView Documentation, Release 0.1.3

The selection-color key allows you to change the color of the selection bar in the TreeView. This bar is what
highlights a row you’ve just clicked on. The value for this key follows the same guidelines as bg, bg-even and
bg-odd Note: This too should only be used in a controlled environment, because you should respect the user’s
choice of theme.

The treemodel key(optional):

This optional key defines a TreeModel instance that is required to properly manage and store the
data so that it can be displayed by your ConfigTreeView. When a call to ConfigTreeView.
get_treemodel() is made, the information for the TreeModel to create is grabbed from this key’s
structure:

{
#Config stuff here...
"treemodel": {

"module": "chronicle.gui.tools.image_loader",
"class": "ImageStore",
"args": ["$index.market.pixbuf"],
"kwargs":{},

}
#More config stuff here...

}

• The “module” key is a string that points to the location of the module that you need to import in
order to create an instance of the custom TreeModel you need to use.

• The “class” key is a string that is the name of the custom TreeModel that will be instantiated. Note:
This class must be an instance of a GtkTreeModel or the instantiation will fail and fallback to a
GtkListStore.

• The “args” key is a list of all the positional arguments you want to send to the TreeModel’s _han-
dle_args() method. This method should be present in your TreeModel custom implementation if you
need to pass any arguments to it that will be handled before data rows are appended to the model.

• The “kwargs” key is a dict of keyword arguments you to send to the TreeModel’s _handle_args()
method. The same rules apply to this key as to the “args” key.

It is important to note that if this key is not supplied, or there is any kind of error in importing, initializing,
or running the custom implementation defined in this structure–the ConfigTreeView will fallback and
initialize a GtkListStore with the proper types and return that instead when get_treemodel() is called.

The index_names key(required):

This required key defines how your data structure will look, as well as defining the types for each member
of a row of data. It essentially defines what attributes a row of data needs, and the types for each attribute.
An example:

{
"index_names":{

"record_open_bool": bool,
"order_status":{

"markup": str,
},
"column_one":[

{"markup": str, "cell-background":str},
{"pixbuf": "gtk.gdk.Pixbuf"}

8 Chapter 1. Contents:

ConfigTreeView Documentation, Release 0.1.3

]
}

}

The top level keys within the index_names dict are names that you give to columns, or names that you
give to a variable. And the values at these keys result in a type for that value later on.

In the above example the “record_open_bool” key is an example of how you’d define a variable. A
‘variable’ in the config file is a value that you want an index for in the data model, but it is used by more
than one CellRenderer. You’ll see how this is applied when the columns structure is detailed later on.

The order_status key in the above example is for a column named order_status that has a single CellRen-
derer that wishes to create an index for “markup” with a type of ‘str’.

The column_one key in the above example is for a column named column_one that has two CellRenderers.
The first CellRenderer defines a “markup” property of type str and a “cell-background” property of type
str. And the second CellRenderer defines a “pixbuf” property of type “gtk.gdk.Pixbuf”.

Note: when creating $index args to pass to “treeview.args/kwargs” you can define any value within the
index_names dict by using dotted-key-notation. Examples:

"$index.record_open_bool"
"$index.order_status.markup"
"$index.column_one.0.markup"
"$index.column_one.1.pixbuf"

The column_order key(required):

This required key defines the order you want the columns to be appended to the ConfigTreeView. Exam-
ple:

"column_order": ["order_status", "column_one"]

The column names are the same as the columns that you define in index_names and also columns.

The macros key(optional):

This key lets you define a set of properties that you wish to use multiple times throughout the config file.
This feature is added only as a convenience to make the config structure cleaner looking by removing
some redundancies. Example:

{
"macros":{

"cell-text-default":{
"font": "Lucida Sans 8",
"foreground": "green",

}
}

}

In the above example, a macro named “cell-text-default” was defined that sets properties “font” and “fore-
ground”. These properties must be valid GtkProperties for whatever widget you end up defining them for(
TreeViewColumn or CellRenderer)

In the next section, columns, you’ll see how to set a macro that’s been defined.

1.4. HOW-TO: Create a config file 9

ConfigTreeView Documentation, Release 0.1.3

The columns key(required):

This required key lets you define the columns, by name, that you want to create for this ConfigTreeView.
The name must be the same name as defined in index_names. Example:

"columns":{
"column_one":{
},
"order_status"{
}

}

Example of “column_one” column:

"column_one":{
"header":{

"title": "Column1",
"module": None,
"class": "Button",
"args": [],
"kwargs": {},

},
"macros": ["cell-text-default"],
"properties"{

"resizable": True,
"visible": True,
"max-width": 100,

},
"renderers":[]

}

The header key is where you define anything about this column’s header. If you just want text in the
header, then supply the title key. You may wish to put a widget up there which you can do by supplying
the ‘module’, ‘class’, ‘args’, and ‘kwargs’ keys for the class you want. Note: if module isn’t supplied, it’s
defaulted to the gtk module. And if class isn’t supplied, it’s defaulted to gtk.Label.

The macros key is where you set the macros that you already defined in the macros top-level-key. This
is simply done by supplying the name of the macro(s) you wish to use in a list as is demonstrated in the
above example.

The properties key is where you define any properties that you want to set for the particular column.
This follows the same guidelines as the properties key in the treeview top-level key. TreeViewColumn
properties: http://www.pygtk.org/docs/pygtk/class-gtktreeviewcolumn.html

Defining Renderers:

The renderers key is where you define what CellRenderers will go into a given column and also what
properties and indices the renderer will have. Example:

"column_one":{
"renderers":[

{
"pack": "pack_start",
"expand": "True",
"module": None,
"class": "CellRendererText",
"args": [],

10 Chapter 1. Contents:

http://www.pygtk.org/docs/pygtk/class-gtktreeviewcolumn.html

ConfigTreeView Documentation, Release 0.1.3

"kwargs": {},
"properties":{

"height": 25,
"xpad": 5,
"font": "Times New Roman 13"

},
"indices": {

"markup": True,
"cell-background-set": "record_open_bool"

}
}
{

"class": "CellRendererPixbuf",
"indices": {

"pixbuf": True,
"cell-background-set": "record_open_bool"

}
}

]
}

If a column has a single CellRenderer, then you define the renderers key as a dict({}), but if a column
has multiple CellRenderers, you define the renderers key as a list([]) containing dicts where each dict is a
CellRenderer

From the above example you see a CellRenderer is defined as: The pack key defines how the Cell-
Renderer will be added to the TreeViewColumn. Accepted values are: “pack_start” and “pack_end”.
If this key isn’t supplied, it defaults to “pack_start”.

The expand key defines whether or not the CellRenderer will expand to the size the TreeViewColumn
supplies. True or False. If key isn’t supplied, it defaults to True.

The module, class, args, and kwargs keys are used to supply a custom CellRenderer. If these keys
aren’t supplied, it’s defaulted to a gtk.CellRendererText

The properties key is where you define any properties that you want to set specifically for this
CellRenderer. This follows the same guidelines as the properties key in the treeview top-level key.
CellRendererProperties: http://www.pygtk.org/pygtk2tutorial/sec-CellRenderers.html

The indices key is where you define what CellRenderer properties you want controlled by the data
model. You already defined the types and size of the structure, this is where you request an index
in the data model for the given property. These properties are also the same properties that you can
define in the properties key, but when they’re defined as an index, the value of the property is defined
by the data model for each row.

In the above example, the first CellRenderer dict defines two properties: “markup” and “cell-
background-set”. When you’re just requesting a new index, a value of True is passed...but when
you’re setting that value to another value(granted the value is defined in index_names) then you’re
simply pointing that property to an index that is shared by multiple renderers.

1.4. HOW-TO: Create a config file 11

http://www.pygtk.org/pygtk2tutorial/sec-CellRenderers.html

ConfigTreeView Documentation, Release 0.1.3

12 Chapter 1. Contents:

CHAPTER 2

API Documentation:

configtreeview Module

configtreeview

Subpackages

configtreeview.tools Package

dataformatter Module

13

ConfigTreeView Documentation, Release 0.1.3

14 Chapter 2. API Documentation:

CHAPTER 3

Examples:

Examples

This section details everything you need to get started using ConfigTreeView s. This includes an example of
how to use the ConfigTreeView, how to create the config structure and also how to create a custom wrapper to
extend its uses to fit your needs and finally how to use the DataFormatter to get your data displayed correctly in the
ConfigTreeView.

How To Use a ConfigTreeView

To use a ConfigTreeView is simple. In your python script there are only a couple steps you need to follow:

1. Initialize the ConfigTreeView with a config structure

2. Apply the configuration to finish initializing the ConfigTreeView components

Example:

#Import the package
from configtreeview import ConfigTreeView
#Create the ConfigTreeView
my_treeview = ConfigTreeView(config) #where `config` is a python dict config
→˓structure you already defined
#Apply the configuration to the TreeView to finish initialization
my_treeview._apply_config()

As you can see from the example, the API to use a ConfigTreeView is incredibly simple. This is possible because the
bulk of the work is done in how you define and build the config structure.

How To Create/Build a config Structure

The config structure itself is just a python dict instance that contains the information necessary to build all of the
interface components for the ConfigTreeView. For more information on what a config structure should look like, refer

15

ConfigTreeView Documentation, Release 0.1.3

to HOW TO: Config File

As an example let’s say we want a very simple treeview that contains two columns that each have a title in their header,
and contain a single string as the data source for their respective GtkCellRenderers. The config structure for such a
case could look like this:

{
"index_names": {

'column_1': {'markup': str},
'column_2': {'markup': str}

},
"column_order": ["column_1", "column_2"],
"columns":{

"column_1":{
"header":{

"title": "Column1"
},
"renderers": {

"indices":{"markup": True}
}

},
"column_2":{

"header":{
"title": "Column2"

},
"renderers": {

"indices":{"markup": True}
}

}
}

}

A Custom ConfigTreeView implmentation

Sometimes it is necessary to create your own implementation of a ConfigTreeView. This section describes the
how? and the why?

Why?

There are many situations in your interface where you may need to subclass the ConfigTreeView so as to handle
something extra that it doesn’t cover. One common situation that has come up in my own experiences has been with
needing to know one of the indexes represented in the data model for some dynamic use throughout your application.
For example: you would like to change the background color of a cell in the treeview based on a user clicking on it
and to do this you need to know which index in a TreeModel row you’re keeping that property. Because of the way
the data model is built for use in the ConfigTreeView with the actual indices hidden from the developer, this is not
immediately an easy task.

How?

But, fear not, the ConfigTreeView supplies an easy way to get around this. To achieve this, you need to do a few
things:

1. Pass the index that you want(in dotted-key notation) to the args‘(or ‘kwargs) of the treeview dict within your
config structure.

16 Chapter 3. Examples:

ConfigTreeView Documentation, Release 0.1.3

2. Create a custom wrapper class that subclasses ConfigTreeView

3. Make sure you override the _handle_args function of ConfigTreeView that will be used to assign the args you
specified in the config structure to an attribute of your custom ConfigTreeView that you can use.

Example: building on from the above sample of a config structure...let’s add a variable to our config that will be used
to change the background of a cellrenderer:

{
"treeview": { #Added a 'treeview' key to supply custom args to our

→˓treeview
"args": ['$index.bg_color'],#Pass the 'bg_color' index to

→˓our custom treeview
},
"index_names": {

'bg_color': str,#Define the 'bg_color' variable--we'll make
→˓it a variable if we plan on using the same index for multiple renderers

'column_1': {'markup': str},
'column_2': {'markup': str}

},
"column_order": ["column_1", "column_2"],
"columns":{

"column_1":{
"header":{

"title": "Column1"
},
"renderers": {

"indices":{"markup": True}
}

},
"column_2":{

"header":{
"title": "Column2"

},
"renderers": {

"indices":{"markup": True}
}

}
}

}

And then a corresponding custom treeview implementation would look something like this:

class CustomConfigTV(ConfigTreeView):
'''
An example of a custom ConfigTreeView wrapper
used to get indices that were defined in
the config structure
'''

def __init__(self, *args):
ConfigTreeView.__init__(self, *args)
#Any post-initializing stuff here
#This is the place to do stuff *BEFORE* the
#columns, renderers, and properties are set
self.background_idx = None

def _handle_args(self, background_idx):
'''

3.1. Examples 17

ConfigTreeView Documentation, Release 0.1.3

Override this function and set your custom args
'''
self.background_idx = background_idx

And now your treeview has an attribute background_idx that will contain the index at which the ‘bg_color’ property
you defined in the config will be formatted to.

Using DataFormatter to create rows

Now that you’ve created a ConfigTreeView and initialized it with a config structure, you’re ready to start giving it
data and using it! In order to get the data properly displayed you need to do a few things:

1. Make sure you understand the ConfigTreeView data model and use it to give properly constructed data sets

2. Create a DataFormatter object, initializing it with your ConfigTreeView ‘s index_map, and types structures.

3. Create a GtkTreeModel to supply your TreeView with data

4. Using the DataFormatter to yield formatted rows that can then be appended to your GtkTreeModel

Example(using the config that was defined above):

from configtreeview.tools import DataFormatter

data = [#The DataFormatter is expecting a list of dicts...each dict is a
→˓row following the ConfigTreeView Data Model

{'column_1': {'markup': 'Some data here'}, 'column_2': {'markup':
→˓'Column 2 data here'}},

{'column_1': {'markup': 'More data col1'}, 'column_2': {'markup':
→˓'Column 2 data here'}},

{'column_1': {'markup': 'Even more data here'}, 'column_2': {'markup
→˓': 'Column 2 data here'}},
]

#Create the DataFormatter
data_formatter = DataFormatter(my_treeview.index_map, mytreeview.types)

#Get a treemodel
liststore = my_treeview.get_treemodel() #Use this function to have your
→˓treeview build you a proper GtkTreeModel instance
my_treeview.set_model(liststore)

#Format the data rows for liststore and append them to it
for row in data_formatter.get_rows(data):

liststore.append(row)

And now the data should be displayed by your treeview!

18 Chapter 3. Examples:

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

	Contents:
	About ConfigTreeView
	More About ConfigTreeView
	The Config Structure
	HOW-TO: Create a config file

	API Documentation:
	configtreeview Module

	Examples:
	Examples

	Indices and tables

