

Welcome to ConfigTreeView’s documentation!

Contents:

	About ConfigTreeView
	The Why (Why use a ConfigTreeView?)

	How to use it

	More About ConfigTreeView
	The Data Model

	The Config Structure
	Complete Structure, with every possible key:

	HOW-TO: Create a config file
	Making a config file

	Basic Structure

API Documentation:

	configtreeview Module

	configtreeview.tools Package

Examples:

	Examples
	How To Use a ConfigTreeView

	How To Create/Build a config Structure

	A Custom ConfigTreeView implmentation

	Using DataFormatter to create rows

Indices and tables

	Index

	Module Index

	Search Page

About ConfigTreeView

This is an implementation of a GtkTreeView in python(using pygtk) that
allows for easy, fast, and dynamic setting up of a TreeView, its
TreeViewColumns and CellRenderers. This ConfigTreeView can create a TreeView
with all its properties initialized through the use of a simple config-type
file. This config file can be in a python dictionary format, or even read
in from a JSON object.

The Why (Why use a ConfigTreeView?)

	The ConfigTreeView was designed in such a way to abstract the developer
from having to set up indices for how a ListStore row of data should look.
The config file creates an easy way to do it and allows you to supply a
row of data in python dict form(or a JSON) while initializing all the
properties, columns, cell renderers that could possbily be used in
creating a TreeView.

	Eliminates the several lines of code it takes to initialize a TreeView.
A TreeView is a very useful but also very complicated widget in the gtk
arsenal and this implementation takes away that complication.

	Useful for data sets that could change frequently without having
to go in and change the code.–This is actually the use case that I ran
into at my place of work that inspired me to create the ConfigTreeView. We
have an application that many people use in the office that is connected
to a server. The application gets all of the data from the server and
displays it in a GtkTreeView but the data could change in the near future
as we may need to display new columns or different formats of data in the
same TreeView so we wanted a system set in place that could allow for us
to change the data the server was sending without having to go in and
change the code in the clients(i.e. the TreeView) in order to properly
display the newly changed data. With a ConfigTreeView you can do just
this: the server can supply a config structure to initialize the clients,
eliminating the need for changing the client code.

How to use it

	It’s easy! All you need to do is create a config file(either as a python
dict in a .py file or as a JSON file).

	Then with a config file, you’re ready to create a ConfigTreeView:

from config_treeview import ConfigTreeView
#Import the config structure(it's a python dict named config)
from myconfigfile import config
#Create a ConfigTreeView using config as the configuration structure
treeview = ConfigTreeView(config)
#Apply the config structure to finish initalizing the TreeView
treeview._apply_config()

More About ConfigTreeView

The ConfigTreeView is an implementation of GtkTreeView that has its widgets,
their properties, and attributes set via a configuration structure. Because
of the nature and design of this config structure, a very simple, intuitive,
and flexible data model has been created that both define the look and feel
of the treeview, but also explicitly detail the shape and look of the data
that the ConfigTreeView is expecting.

The ConfigTreeView‘s data model is indirectly defined in the index-names
key in the config structure. This key has a dictionary as its value that
looks something like this:

{
 'cell-bg-index': bool,
 'market':{'pixbuf': "gtk.gdk.Pixbuf"},
 'status':[{'markup':str},{'markup':str}],
 'name':{'markup':str},
 'address':{'markup':str},
 'contact':{'markup':str},
 'payment':[{'markup':str}, {'markup':str}],
 'shipping':{'markup':str},
 'comments':{'markup':str},
 'placed':{'markup':str},
 'id': str,
}

Each inner-level key represents a new index of the defined type in a data row
that will eventually be inserted into a GtkTreeModel.

The Data Model

The ConfigTreeView data model refers to what structure the incoming data must
look like in order for the data to be properly formatted and displayed. The data
model is indirectly defined by the index-names dictionary defined in the
configuration structure. What this means is that the index-names dictionary is also
the same structure that the data model should follow, replacing the types that
were defined for the actual values at that particular index. An example data
structure for a single row of data following the data model defined above:

{
 'cell-bg-index': True,
 'market':{'pixbuf': "/images/market1.png"},
 'status':[{'markup': "Current Status"},{'markup': "Shipped"}],
 'name':{'markup': "Darth Vader"},
 'address':{'markup': "The Death Star"},
 'contact':{'markup': "867-5309"},
 'payment':[{'markup': "Visa"}, {'markup': "$100.00"}],
 'shipping':{'markup': "Shipped"},
 'comments':{'markup': "No comments"},
 'placed':{'markup': "2012-06-19 12:08:33PM"},
 'id': "123435252335",
}

But the data model also is a little more flexible than this. There may come
a time when you don’t want to display all information for a row. With this
data model you only need to define the indices that you plan on using. So
a more minimal row of data could look like this:

{
 'name': {'markup': "Darth Vader"},
 'address': {'markup': "The Death Star"},
 'status': [{'markup': "Current Status"}, {'markup': "Shipped"}]
}

The Config Structure

We needed something that could initialize the treeview’s gui components and their
properties(TreeViewColumn, CellRenderer, and the TreeView itself), but also
have an insight into what each renderer is expecting of the data(for setting up
cell-specific renderer properties, or which data it’s going to display) without
having to specifically define the actual indices into the data that these
components are searching for(the treeview will be able to handle that internally
upon initialization using the config file)

Complete Structure, with every possible key:

Note: This structure details every possible key or key arrangement for
the sake of it. It can appear to be complex and overwhelming at first glance,
but don’t fret. If a key that isn’t required isn’t used at all for the
ConfigTreeView you want to build, then don’t have to include that key. This
applies to top-level keys as well. This functionality allows the user
to rapidly and easily build TreeViews.

{
 "treeview":{
 "properties":{ #This struct will contain all treeview properties---meaning things that can be set using `treeview.set_property(property, value)`
 "rules-hint": True,#<---A property of GtkTreeView
 "headers-clickable": True,
 },
 "args": [#Positional arguments to send to a custom ConfigTreeView--can be indices, or custom values
 "$index.record_open_bool", #This is how you assign an index as an argument to the ConfigTreeView
 "$index.column_one.1.markup", #An example assigning an index from a column that has multiple renderers--a number in a 'dotted' string represents the index in the list of renderers
],
 "kwargs": {}, #Keyword arguments to send to a custom ConfigTreeView--same rules as "args"
 'bg': None, #Set background color, bg-even and bg-odd override this option
 'bg-even': '#A2C879', #Set even-row background color...must be accompanied by bg-odd
 'bg-odd': '#6794AB', #Set odd-row background color...must be accompanied by bg-even
 'selection-mode': 'SELECTION_SINGLE', #The selection mode of the TreeView...must be one of SELECTION_NONE, SELECTION_SINGLE, SELECTION_BROWSE, SELECTION_MULTIPLE
 'selection-color': '#bfd3e7', #Change the color of the selection bar--value can be a valid color name or hex string
 },
 "treemodel": { #You can tell the TreeView to build you a custom TreeModel(via the get_treemodel() function)
 "module": "package.subpackage.module", #The package/module location of the class to import
 "class": "CustomTreeModelClass", #Your custom GtkTreeModel implementation
 "args": [], #The positional arguments to send to the TreeModel's _handle_args method
 "kwargs": {}, #The keyword arguments to send to the TreeModel's _handle_args method
 },
 "index_names":{ #Maps the given index into the type of data it will store
 "record_open_bool": bool, #This is how you define a type of 'bool' for an index that will be used by more than one column's renderer
 "order_status":{ #This is how you specifically define types for a certain column(that contains only a single CellRenderer)
 "markup": str, #The `markup` property of the cell renderer
 },
 "column_one":[#This is how you define types for columns with multiple renderers
 { "markup": str, "cell-background": str},
 { "pixbuf": "gtk.gdk.Pixbuf"},
],
 },
 "column_order": ['column_one', 'order_status'], #Define the order the columns are appended in the treeview. List the column names in the order you want them appended to the TreeView
 "macros": { #Define macros--a convenience for assiging the same properties to multiple columns or renderers
 "col-default": {
 "expand": True,
 "resizable": True,
 "clickable": True,
 "reorderable": True,
 }
 },
 "columns": {
 "column_one": { #A column named "column_one"--the name is used when determing: where columns go in the TreeView, which indices a column's renderers will use, and their types
 "macros": ["col-default"], #Assign a macro(by name)
 'header': { #This struct contains information to create the header for this column. A header can be a string or a custom widget. Defaults to do nothing
 'title': 'Column1', #A simple text label displaying the title(This is a fallback to the custom widget)
 'module': None, #The module that contains the header widget, None defaults to the gtk module
 'class': 'Button', #A string of the class(must inherit gtk.Widget), to set the header widget to. None defaults to gtk.Label(If 'title' key isn't present)
 'args': [], #Positional arguments to pass to 'class'
 'kwargs': {}, #Keyword arguments to pass to 'class'
 },
 "properties": { #This struct will contain all TreeViewColumn properties that can be set using treeviewcolumn.set_property(property, value)
 "resizable": True,
 "visible": True,
 "max-width": 100,
 },
 "renderers":[#Create the Renderers(use a list if multiple renderers in one column)
 {
 'pack': 'pack_start', #Either 'pack_start' or 'pack_end', if this is None, defaults to pack_start
 'expand': True, #Sets the packing method 'expand' property, if this is None, defaults to True
 'module': None, #The module that contains the renderer, None if it's in the gtk module
 'class': 'CellRendererText', #A string name of the CellRenderer class to use(must inherit gtk.CellRenderer)...if this is None, defaults to gtk.CellRendererText
 'args': [], #Positional arugments to pass to 'class', if None, don't pass args to 'class'
 'kwargs': {}, #Keyword arguments to pass to 'class', if None don't pass kwargs to 'class'
 'properties': { #This struct contains all properties that each row will have by using cellrenderer.set_property(property, value), if 'properties' doesn't exist(or None), then no props set.
 'height': 25,
 'xpad': 5,
 'font': 'Times New Roman 13',
 },
 'indices': { #This struct contains all properties that are set from the treemodel data...using column.add(attribute,property, index), None sets no attributes
 #These indices are determined at runtime when the ConfigTreeView is initialized.
 #You can either set them by assigning them a name(if one index will be shared by multiple renderers)
 # NOTE: You must assign by a name that exists in the 'index_names' key of this configuration file
 #Or you can set them by setting a property value to True, telling the TreeView that this one is unique
 "markup": True, #This CellRendererText needs its own 'markup' index in the data model
 "cell-background-set": "record_open_bool" #All columns will share this index

 }
 },
 { #The second renderer in the "column_one" column
 'class': 'CellRendererPixbuf',
 'indices': {
 'pixbuf': True, #This CellRendererPixbuf needs its own 'pixbuf' index in the data model
 'cell-background-set': 'record_open_bool', #All columns will share this index
 },

 },
],
 },
 "order_status": { #Another column, this one named "order_status"
 'header': {
 'title': 'Order Status',
 },
 'properties': {
 'resizable': True,
 },
 'renderers': { #A single renderer can be defined as a single dict instead of as a list
 'markup': True, #This CellRendererText needs its own 'markup' index in the data model
 'cell-background-set': 'record_open_bool'#All columns will share this index
 },

 }
 }

}

HOW-TO: Create a config file

This document details everything you need to know about creating a config file
for use with a ConfigTreeView. First I’ll say a few things about how a config
file is made.

Making a config file

-The config file is represented as a dictionary in python. Because of
this, you can either create a python dict in a separate .py file or
create one on the fly within your code...OR...you can create the dict
in a JSON document...and simply give the path to the JSON file in the
constructor to the ConfigTreeView where you’d supply the python dict
normally.

Basic Structure

-Here’s a look at the top-level keys in the config dict:

{
 "treeview": {},
 "treemodel": {},
 "index_names":{},
 "column_order":[],
 "macros": {},
 "columns":{}
}

The treeview key(optional):

	The treeview key(this key is not required, unless you’re setting properties):

	This key sets up everything dealing with initializing the TreeView container.
This includes setting gtk properties, some style options and also supplying
custom positional and/or keyword arguments to your custom ConfigTreeView.

example:

{
 "treeview": {
 "properties": {
 "rules-hint": True,
 "headers-clickable": True
 },
 "args": [],
 "kwargs": {},
 "bg": "green",
 "bg-even": "red",
 "bg-odd": "yellow",
 "selection-mode": "SELECTION_SINGLE",
 "selection-color": "blue"
 }
}

The properties key defines gtk properties for the TreeView as found in the
pygtk documentation: http://www.pygtk.org/docs/pygtk/class-gtktreeview.html
Any of the properties listed here can be defined in the “properties” key.
An entry in the properties dict takes the following form:

"gtk-property-name": "value"

Note: if the value is not a native python type(ex: a gtk object),
this is not currently supported if you define the config file in
a JSON as primitive types...but only a few properties are
like that. If you need to use these types, consider it good practice
to define the config structure in it’s own python module. Then you can
import all the modules you need.

The args and kwargs keys let you define positional(args) and keyword(kwargs)
to a custom ConfigTreeView prototype. This works in the same fashion as passing
any positional([]) and keyword({}) args to an object in python. A common use/need for
this arises when you need your custom treeview to know the index of an attribute
that was defined in the config file. The config file makes this easy with the
use of the $index dotted-key string.

An example of an $index key: $index.cell_bg_set
Supplying the above $index key in either args or kwargs will set that
parameter as the index of ‘cell_bg_set’(as defined in index_names) in
the data model.
Values supplied to args and kwargs are passed through the ‘handle_args’
function in the ConfigTreeView which should be overridden when you create
your own custom ConfigTreeView.

The bg, bg-even, and bg-odd keys are style options that I’ve added that
allow you to change the background colors of a TreeView. bg by itself
changes the background to a single color...color can either be a gtk-accepted
string name(ex: “blue”) or it can be a hexidecimal string(ex: “#FF0078”).
If you wish to have your ConfigTreeView with two colors, alternating per row,
supply the bg-even and bg-odd colors instead. Note: bg-even and bg-odd
must be supplied together or you’ll get errors when you try to apply your
config.
A GTK Note: These color options change the underlying GtkStyle which is
determined by the users theme. You should try to stay away from using this
and respect a user’s theme choices...but if you’re in a controlled environment
or it’s for personal use, then it’s okay to change these styles as you see fit.

The selection-mode key allows you to set the mode of the GtkTreeSelection.
This is limited to these values:
(SELECTION_NONE, SELECTION_SINGLE, SELECTION_BROWSE, SELECTION_MULTIPLE)

The selection-color key allows you to change the color of the selection bar
in the TreeView. This bar is what highlights a row you’ve just clicked on.
The value for this key follows the same guidelines as bg, bg-even and bg-odd
Note: This too should only be used in a controlled environment, because you
should respect the user’s choice of theme.

The treemodel key(optional):

This optional key defines a TreeModel instance that is required to properly
manage and store the data so that it can be displayed by your ConfigTreeView.
When a call to ConfigTreeView.get_treemodel() is made, the information
for the TreeModel to create is grabbed from this key’s structure:

{
 #Config stuff here...
 "treemodel": {
 "module": "chronicle.gui.tools.image_loader",
 "class": "ImageStore",
 "args": ["$index.market.pixbuf"],
 "kwargs":{},
 }
 #More config stuff here...
}

	The “module” key is a string that points to the location of the
module that you need to import in order to create an instance of the
custom TreeModel you need to use.

	The “class” key is a string that is the name of the custom TreeModel that
will be instantiated. Note: This class must be an instance of a GtkTreeModel
or the instantiation will fail and fallback to a GtkListStore.

	The “args” key is a list of all the positional arguments you want to
send to the TreeModel’s _handle_args() method. This method should be
present in your TreeModel custom implementation if you need to pass any
arguments to it that will be handled before data rows are appended to the
model.

	The “kwargs” key is a dict of keyword arguments you to send to the TreeModel’s
_handle_args() method. The same rules apply to this key as to the “args” key.

It is important to note that if this key is not supplied, or there is any
kind of error in importing, initializing, or running the custom implementation
defined in this structure–the ConfigTreeView will fallback and initialize
a GtkListStore with the proper types and return that instead when get_treemodel()
is called.

The index_names key(required):

This required key defines how your data structure will look, as
well as defining the types for each member of a row of data. It essentially
defines what attributes a row of data needs, and the types for each attribute.
An example:

{
 "index_names":{
 "record_open_bool": bool,
 "order_status":{
 "markup": str,
 },
 "column_one":[
 {"markup": str, "cell-background":str},
 {"pixbuf": "gtk.gdk.Pixbuf"}
]
 }
}

The top level keys within the index_names dict are names that you
give to columns, or names that you give to a variable. And the values at
these keys result in a type for that value later on.

In the above example the “record_open_bool” key is an example
of how you’d define a variable. A ‘variable’ in the config file is
a value that you want an index for in the data model, but it is used by
more than one CellRenderer. You’ll see how this is applied when the columns
structure is detailed later on.

The order_status key in the above example is for a column named order_status
that has a single CellRenderer that wishes to create an index for “markup” with
a type of ‘str’.

The column_one key in the above example is for a column named column_one
that has two CellRenderers. The first CellRenderer defines a “markup” property
of type str and a “cell-background” property of type str. And the second
CellRenderer defines a “pixbuf” property of type “gtk.gdk.Pixbuf”.

Note: when creating $index args to pass to “treeview.args/kwargs” you can
define any value within the index_names dict by using dotted-key-notation.
Examples:

"$index.record_open_bool"
"$index.order_status.markup"
"$index.column_one.0.markup"
"$index.column_one.1.pixbuf"

The column_order key(required):

This required key defines the order you want the columns to be appended to
the ConfigTreeView.
Example:

"column_order": ["order_status", "column_one"]

The column names are the same as the columns that you define in index_names
and also columns.

The macros key(optional):

This key lets you define a set of properties that you wish to use multiple
times throughout the config file. This feature is added only as a convenience
to make the config structure cleaner looking by removing some redundancies.
Example:

{
 "macros":{
 "cell-text-default":{
 "font": "Lucida Sans 8",
 "foreground": "green",
 }
 }
}

In the above example, a macro named “cell-text-default” was defined that
sets properties “font” and “foreground”. These properties must be valid
GtkProperties for whatever widget you end up defining them for(TreeViewColumn
or CellRenderer)

In the next section, columns, you’ll see how to set a macro that’s been
defined.

The columns key(required):

This required key lets you define the columns, by name, that you want to
create for this ConfigTreeView. The name must be the same name as defined
in index_names.
Example:

"columns":{
 "column_one":{
 },
 "order_status"{
 }
}

Example of “column_one” column:

"column_one":{
 "header":{
 "title": "Column1",
 "module": None,
 "class": "Button",
 "args": [],
 "kwargs": {},
 },
 "macros": ["cell-text-default"],
 "properties"{
 "resizable": True,
 "visible": True,
 "max-width": 100,
 },
 "renderers":[]
}

The header key is where you define anything about this column’s header.
If you just want text in the header, then supply the title key. You may
wish to put a widget up there which you can do by supplying the ‘module’,
‘class’, ‘args’, and ‘kwargs’ keys for the class you want.
Note: if module isn’t supplied, it’s defaulted to the gtk module. And if
class isn’t supplied, it’s defaulted to gtk.Label.

The macros key is where you set the macros that you already defined
in the macros top-level-key. This is simply done by supplying
the name of the macro(s) you wish to use in a list as is demonstrated
in the above example.

The properties key is where you define any properties that you want
to set for the particular column. This follows the same guidelines as
the properties key in the treeview top-level key.
TreeViewColumn properties:
http://www.pygtk.org/docs/pygtk/class-gtktreeviewcolumn.html

Defining Renderers:

The renderers key is where you define what CellRenderers will go
into a given column and also what properties and indices the renderer
will have.
Example:

"column_one":{
 "renderers":[
 {
 "pack": "pack_start",
 "expand": "True",
 "module": None,
 "class": "CellRendererText",
 "args": [],
 "kwargs": {},
 "properties":{
 "height": 25,
 "xpad": 5,
 "font": "Times New Roman 13"
 },
 "indices": {
 "markup": True,
 "cell-background-set": "record_open_bool"
 }
 }
 {
 "class": "CellRendererPixbuf",
 "indices": {
 "pixbuf": True,
 "cell-background-set": "record_open_bool"
 }
 }
]
}

If a column has a single CellRenderer, then you define the renderers
key as a dict({}), but if a column has multiple CellRenderers, you define
the renderers key as a list([]) containing dicts where each dict
is a CellRenderer

	From the above example you see a CellRenderer is defined as:

	The pack key defines how the CellRenderer will be added to the TreeViewColumn.
Accepted values are: “pack_start” and “pack_end”. If this key isn’t supplied,
it defaults to “pack_start”.

The expand key defines whether or not the CellRenderer will expand to
the size the TreeViewColumn supplies. True or False. If key isn’t supplied,
it defaults to True.

The module, class, args, and kwargs keys are used to supply
a custom CellRenderer. If these keys aren’t supplied, it’s defaulted to
a gtk.CellRendererText

The properties key is where you define any properties that you want
to set specifically for this CellRenderer. This follows the same guidelines
as the properties key in the treeview top-level key.
CellRendererProperties: http://www.pygtk.org/pygtk2tutorial/sec-CellRenderers.html

The indices key is where you define what CellRenderer properties you
want controlled by the data model. You already defined the types and
size of the structure, this is where you request an index in the data
model for the given property.
These properties are also the same properties that you can define
in the properties key, but when they’re defined as an index, the value
of the property is defined by the data model for each row.

In the above example, the first CellRenderer dict defines two properties:
“markup” and “cell-background-set”. When you’re just requesting a new index,
a value of True is passed...but when you’re setting that value to another
value(granted the value is defined in index_names) then you’re simply
pointing that property to an index that is shared by multiple renderers.

configtreeview Module

configtreeview

Subpackages

	configtreeview.tools Package
	dataformatter Module

configtreeview.tools Package

dataformatter Module

configtreeview.tools Package

dataformatter Module

Examples

This section details everything you need to get started using ConfigTreeView s.
This includes an example of how to use the ConfigTreeView, how to create the
config structure and also how to create a custom wrapper to extend its uses
to fit your needs and finally how to use the DataFormatter to get your data
displayed correctly in the ConfigTreeView.

How To Use a ConfigTreeView

To use a ConfigTreeView is simple. In your python script there are only a couple
steps you need to follow:

	Initialize the ConfigTreeView with a config structure

	Apply the configuration to finish initializing the ConfigTreeView
components

Example:

#Import the package
from configtreeview import ConfigTreeView
#Create the ConfigTreeView
my_treeview = ConfigTreeView(config) #where `config` is a python dict config structure you already defined
#Apply the configuration to the TreeView to finish initialization
my_treeview._apply_config()

As you can see from the example, the API to use a ConfigTreeView is incredibly
simple. This is possible because the bulk of the work is done in how you define
and build the config structure.

How To Create/Build a config Structure

The config structure itself is just a python dict instance that contains the
information necessary to build all of the interface components for the ConfigTreeView.
For more information on what a config structure should look like, refer to
HOW TO: Config File

As an example let’s say we want a very simple treeview that contains two columns
that each have a title in their header, and contain a single string as the data
source for their respective GtkCellRenderers. The config structure for such a
case could look like this:

{
 "index_names": {
 'column_1': {'markup': str},
 'column_2': {'markup': str}
 },
 "column_order": ["column_1", "column_2"],
 "columns":{
 "column_1":{
 "header":{
 "title": "Column1"
 },
 "renderers": {
 "indices":{"markup": True}
 }
 },
 "column_2":{
 "header":{
 "title": "Column2"
 },
 "renderers": {
 "indices":{"markup": True}
 }
 }
 }
}

A Custom ConfigTreeView implmentation

Sometimes it is necessary to create your own implementation of a ConfigTreeView.
This section describes the how? and the why?

Why?

There are many situations in your interface where you may need to subclass the
ConfigTreeView so as to handle something extra that it doesn’t cover. One
common situation that has come up in my own experiences has been with needing
to know one of the indexes represented in the data model for some dynamic use
throughout your application. For example: you would like to change the background
color of a cell in the treeview based on a user clicking on it and to do this
you need to know which index in a TreeModel row you’re keeping that property.
Because of the way the data model is built for use in the ConfigTreeView
with the actual indices hidden from the developer, this is not immediately an
easy task.

How?

But, fear not, the ConfigTreeView supplies an easy way to get around this.
To achieve this, you need to do a few things:

	Pass the index that you want(in dotted-key notation) to the args`(or `kwargs)
of the treeview dict within your config structure.

	Create a custom wrapper class that subclasses ConfigTreeView

	Make sure you override the _handle_args function of ConfigTreeView
that will be used to assign the args you specified in the config structure
to an attribute of your custom ConfigTreeView that you can use.

Example: building on from the above sample of a config structure...let’s add a
variable to our config that will be used to change the background of a cellrenderer:

{
 "treeview": { #Added a 'treeview' key to supply custom args to our treeview
 "args": ['$index.bg_color'],#Pass the 'bg_color' index to our custom treeview
 },
 "index_names": {
 'bg_color': str,#Define the 'bg_color' variable--we'll make it a variable if we plan on using the same index for multiple renderers
 'column_1': {'markup': str},
 'column_2': {'markup': str}
 },
 "column_order": ["column_1", "column_2"],
 "columns":{
 "column_1":{
 "header":{
 "title": "Column1"
 },
 "renderers": {
 "indices":{"markup": True}
 }
 },
 "column_2":{
 "header":{
 "title": "Column2"
 },
 "renderers": {
 "indices":{"markup": True}
 }
 }
 }
}

And then a corresponding custom treeview implementation would look something like
this:

class CustomConfigTV(ConfigTreeView):
 '''
 An example of a custom ConfigTreeView wrapper
 used to get indices that were defined in
 the config structure
 '''

 def __init__(self, *args):
 ConfigTreeView.__init__(self, *args)
 #Any post-initializing stuff here
 #This is the place to do stuff *BEFORE* the
 #columns, renderers, and properties are set
 self.background_idx = None

 def _handle_args(self, background_idx):
 '''
 Override this function and set your custom args
 '''
 self.background_idx = background_idx

And now your treeview has an attribute background_idx that will contain the index
at which the ‘bg_color’ property you defined in the config will be formatted to.

Using DataFormatter to create rows

Now that you’ve created a ConfigTreeView and initialized it with a config structure,
you’re ready to start giving it data and using it!
In order to get the data properly displayed you need to do a few things:

	Make sure you understand the ConfigTreeView data model
and use it to give properly constructed data sets

	Create a DataFormatter object, initializing it with your ConfigTreeView ‘s
index_map, and types structures.

	Create a GtkTreeModel to supply your TreeView with data

	Using the DataFormatter to yield formatted rows that can then be
appended to your GtkTreeModel

Example(using the config that was defined above):

from configtreeview.tools import DataFormatter

data = [#The DataFormatter is expecting a list of dicts...each dict is a row following the ConfigTreeView Data Model
 {'column_1': {'markup': 'Some data here'}, 'column_2': {'markup': 'Column 2 data here'}},
 {'column_1': {'markup': 'More data col1'}, 'column_2': {'markup': 'Column 2 data here'}},
 {'column_1': {'markup': 'Even more data here'}, 'column_2': {'markup': 'Column 2 data here'}},
]

#Create the DataFormatter
data_formatter = DataFormatter(my_treeview.index_map, mytreeview.types)

#Get a treemodel
liststore = my_treeview.get_treemodel() #Use this function to have your treeview build you a proper GtkTreeModel instance
my_treeview.set_model(liststore)

#Format the data rows for liststore and append them to it
for row in data_formatter.get_rows(data):
 liststore.append(row)

And now the data should be displayed by your treeview!

Index

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to ConfigTreeView's documentation!

 		About ConfigTreeView

 		The Why (Why use a ConfigTreeView?)

 		How to use it

 		More About ConfigTreeView

 		The Data Model

 		The Config Structure

 		Complete Structure, with every possible key:

 		HOW-TO: Create a config file

 		Making a config file

 		Basic Structure

 		The treeview key(optional):

 		The treemodel key(optional):

 		The index_names key(required):

 		The column_order key(required):

 		The macros key(optional):

 		The columns key(required):

 		Defining Renderers:

 		configtreeview Module

 		configtreeview

 		Subpackages

 		configtreeview.tools Package

 		configtreeview.tools Package

 		dataformatter Module

 		Examples

 		How To Use a ConfigTreeView

 		How To Create/Build a config Structure

 		A Custom ConfigTreeView implmentation

 		Why?

 		How?

 		Using DataFormatter to create rows

_static/comment-bright.png

